a solution that is able to withstand changes in pH (so that the pH is almost constant) upon addition of small amounts of acid or base - based upon the common ion effect
pH of human body $7.4\left(37^{\circ} \mathrm{C}\right)$ - below 7 and above 7.8 death quickly follows. In the body the pH is maintained by carbonate, phosphate and protein buffers

Common Ion Effect

shift of an ionic equilibrium upon addition of a solute which contains an ion that participates in the equilibrium

EX 1. What is the pH of 1.0 F HF ? $\left(K_{\mathrm{a}}=6.6 \times 10^{-4}\right)$ and the fraction (or percent) dissociated?
Major Species

$$
\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

EX 2. Consider the addition of enough NaF to the solution in EX 1 to make the solution 1 F in both HF and NaF . Determine the pH and fraction dissociated. Since

$$
\mathrm{NaF}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{Na}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

the concentration table changes:

$$
\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \quad<\quad \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

EX 3. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=6.6 \times 10^{-4}\right)$ and 0.1 M in HCl ?

EX 4. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=6.6 \times 10^{-4}\right)$ and 0.1 M in NaOH ?

Working with Buffer Solutions

*note ratio of base form to acid
based on a weak acid (HA) and its conjugate base (A-)

$$
\begin{aligned}
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q) \quad K_{\mathrm{a}}= & \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \mathrm{pH}=\mathrm{p}_{\mathrm{a}}+\log _{10} \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]} \\
\text { Henderson - Hasselbalch Equation: } & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned} \begin{aligned}
& \text { do not forget about activities } \\
& \mathrm{pH}=\mathrm{pH} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right] \gamma_{A^{-}}}{[\mathrm{HA}] \gamma_{\mathrm{HA}}}
\end{aligned}
$$

based on a weak base ($\mathrm{B}:$) and its conjugate acid $\left(\mathrm{BH}^{+}\right)$

$$
\begin{aligned}
& \mathrm{B}:(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>\mathrm{OH}^{-}(a q)+\mathrm{BH}^{+}(a q) \\
& \mathrm{BH}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{B}:(a q) \quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]} \text {or } \mathrm{pH}=\mathrm{p}_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}:]}{\left[\mathrm{BH}^{+}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Henderson - Hasselbalch Equation: } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]} \swarrow^{*}{ }_{\text {this a acid }}^{\mathrm{p} K_{\mathrm{a}} \text { applies tc }} \\
& \text { elbalch Equation }
\end{aligned}
$$

Henderson-Hasselbalch Equation

For most cases the Henderson-Hasselbalch equation can be simplified by not solving the equilibrium problem and making the substitutions (real Henderson-Hasselbalch equation)

$$
\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \approx \frac{\left[\mathrm{A}^{-}\right]_{0}}{[\mathrm{HA}]_{0}} \quad \text { or } \quad \frac{[\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]} \approx \frac{[\mathrm{B}:]_{0}}{\left[\mathrm{BH}^{+}\right]_{0}}
$$

If F_{HA} or $F_{\mathrm{A}-}$ is small (solution is too dilute) or if $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is large (too acidic or too basic) then this approximation cannot be used and the systematic approach must be used.

Preparation of a Buffer

1) Weak Acid and its Conjugate Base (or Weak Base and its Conjugate Acid)
2) Addition of Strong Base to Weak Acid (or Strong Acid to Weak Base)

EX 5. $K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}$
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$.
b) Determine the pH when 100 mL of 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid.

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right) K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$.

FIND THE RATIO then work in molarity or moles

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(K_{\mathrm{a}}=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006\right)$ and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

EX 8. An aqueous solution contains 0.331 F methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}, K_{\mathrm{b}}=4.4 \times 10^{-4}\right)$. How many mL of 0.293 M hydroiodic acid would have to be added to 225 mL of this solution in order to prepare a buffer with a pH of 11.100 ?
when working with buffers do stoichiometry first (first line of ICE table) then handle equilibrium

